

Name: _____

<u>Section A - Calculator Free</u> - Time Allowed: 25 minutes

1. [1, 1, 2 = 4 marks]

Given the vectors $\underline{\alpha}$, \underline{b} and \underline{c} shown in the diagram below, represent the resultant of:

(a)
$$-a + 2b$$

(b)
$$2\tilde{c} - \tilde{b}$$

No direction shown - Im

(c) Express \underline{a} in terms of \underline{b} and \underline{c} .

$$\therefore \quad \alpha = \frac{2}{3} \left(b - c \right)$$

2. [3 marks]

Express the following vector in the form $a\underline{i} + b\underline{j}$. Give a and b as exact rationalised values.

3.
$$[1, 2, 3, 2 = 8 \text{ marks}]$$

Given $\underline{a} = -3\underline{i} + 2\underline{j}$ and $\underline{b} = 5\underline{i} - \underline{j}$ determine exactly:

(a)
$$-2a + 3b$$

 $6i - 4j + 15i - 3j = 21i - 7j$

(b)
$$|\underline{a} + \underline{b}|$$

$$= |2i + \underline{i}|$$

$$= \sqrt{5}$$

(c)
$$|\underline{a}| + |\underline{b}|$$
 in the form $\sqrt{x} (\sqrt{y} + \sqrt{z})$

(d) A vector that is parallel but opposite to
$$a$$
 with a magnitude of 5.

$$\frac{-5\sqrt{(-3i+2j)}}{\sqrt{13}} = +\frac{15i-10j}{\sqrt{13}}$$

$$= \frac{-5\sqrt{13}(-3i+2j)}{13} = \frac{15\sqrt{13}i - 10\sqrt{13}j}{13}$$

4. [2 marks]

The "SS Aardvark" is at position (20,10) at 2 p.m.

It now begins to move with a velocity vector of 7i - j km/h. If it continues with this velocity what will be its position at 1700?

5. [4 marks]

Vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} are such that $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j}$, $\mathbf{b} = x\mathbf{i} - 8\mathbf{j}$ and $\mathbf{c} = y\mathbf{i} + 7\mathbf{j}$. Given that \mathbf{a} and \mathbf{b} are parallel and **b** and **c** have equal magnitudes fint the values of x and y.

$$b = 7(3i + 4j)$$
= $xi + 8j$

$$x = -6$$

$$x = -6$$

$$|b| = 10$$

$$\Rightarrow 10^{2} = y^{2} + 7^{2}$$

$$y = \pm \sqrt{51}$$

[1, 1, 2=4 marks]6.

OAB is a triangle with C a point on \overline{AB} such that $\overline{AC} = \frac{3}{4}\overline{AB}$. If $\overline{OA} = a$ and $\overline{OB} = b$, express in terms of a and or b:

(a)
$$\overrightarrow{AB} = 5 - 6$$

(b)
$$\overrightarrow{CB} = \frac{1}{4}(b-a)$$

(c)
$$\overrightarrow{OC} = b + \cancel{4} + \cancel{4} = 0$$

= $\overrightarrow{OB} + \overrightarrow{BC} = 3b + \cancel{4} = 4$

Section B:

30

Name:

<u>Section B - Calculator and Notes Allowed</u> - Time Allowed: 30 minutes

1. [1, 2, 2 = 5 marks]

The angle between vectors \mathbf{a} and \mathbf{b} is 50°. Given that $|\mathbf{a}| = 20$ metres and $|\mathbf{b}| = 15$ metres: (a) make a sketch of the situation in the space provided.

(b) Use the rules of trigonometry to find |a + b|.

$$|a+b|^2 = 20^2 + 15^2 - 2x20 \times 15 605 130^{\circ}$$

 $|a+b| = \sqrt{1010.67}$
 $= 31.79 \text{ M}$

(b) Find the size of the angle between a + b and a.

2. [5 marks]

3.

A student wishes to paddle her canoe West across the river from Point A on one bank to the jetty which is on the opposite bank, directly opposite A. The student can paddle at a steady 5 km/h in still water. However, today the river is flowing South at 2 km/h. If the river is 500 m wide at that point, find the direction she should paddle and the time it will take to cross the river. A clearly labelled diagram is for full marks.

Using a = 2i + 3j and b = 4i - j, express 6i - 4j in the form $\lambda t + \mu j$ leaving λ and μ as fractions.

4. [4 marks]

 F_1 , F_2 and F_3 are all forces that act simultaneously on a body. F_1 is measured at $\binom{2}{3}$ N, F_2 at $\langle 4,3 \rangle$ N and $F_3 = 2i-4j$ N. Find the exact magnitude of the resultant force acting on the body and it's direction correct to the third decimal place. <u>Use North as the direction of j.</u>

5. [4 marks]

Carefully study the diagram that shows a journey taken by a hiker from camp to a waterfall, via a scenic lookout. Find the direct distance of the waterfall from camp and the bearing of the camp from the waterfall.

6. [3 marks]

Arnie has parked his car and trailer on a hill which is sloping at 15° to the horizontal. He intends to unhitch the trailer from the car and push the trailer up the hill himself.

The trailer exerts a force due to gravity of 2000N vertically and Arnie can push with a force of 700N parallel to the hill. Will he be able to move the trailer? Justify your answer.

7. [3 marks]

Janine was travelling due north at 60 km/h and turned (taking 5 seconds) so that she is now travelling due East at 80 km/h. Find the direction and magnitude of her acceleration.

Seconds =
$$\frac{1}{720}$$
 th How.

The solution of the seconds is the second of the secon